Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9317, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653748

RESUMO

Carbon fibre-reinforced polymer (CFRP) plates can efficiently repair or enhance the mechanical properties of the square hollow section. However, the loading end of such a CFRP-strengthened member is prone to local bearing failure under compressive load. Given this limitation, an innovative CFRP-plate-strengthened square hollow section composite member (CFRP-SHSCM) was raised, and the thick-walled section was welded on both ends of the thin-walled steel column. The mechanical properties of CFRP-SHSCMs were investigated through parameter finite element (FE) analysis, focusing on the influence of the amount of CFRP layers (nc), the slenderness ratio (λ), the initial geometric imperfections (v0), the CFRP layouts (2S and 4S) and the length of the exposed steel column (Le). The load-displacement curves, the bearing force, and typical failure modes were also acquired. Results indicated that with increasing nc and v0, and decreasing λ, the conventional CFRP-SHSCMs were prone to local bearing failure with poor ductility, leading to the insufficient use of the CFRP plate, in contrast, the improved CFRP-SHSCMs primarily underwent overall buckling failure and exhibited better bearing force and ductility. Finally, the modified Perry-Robertson formula was put forward to predict the ultimate load of the CFRP-SHSCMs. The coefficients of variation between the FE simulation and the theoretical results were 0.00436 and 0.0292, respectively.

2.
Adv Sci (Weinh) ; 10(33): e2303377, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870208

RESUMO

Neural interfaces for stable access to the spinal cord (SC) electrical activity can benefit patients with motor dysfunctions. Invasive high-density electrodes can directly extract signals from SC neuronal populations that can be used for the facilitation, adjustment, and reconstruction of motor actions. However, developing neural interfaces that can achieve high channel counts and long-term intraspinal recording remains technically challenging. Here, a biocompatible SC hyperflexible electrode array (SHEA) with an ultrathin structure that minimizes mechanical mismatch between the interface and SC tissue and enables stable single-unit recording for more than 2 months in mice is demonstrated. These results show that SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC. Gait analysis and histology show that SHEA implantation induces negligible behavioral effects and Inflammation. Additionally, multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, it is found that the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns. Thus, SHEA can offer an efficient and reliable SC neural interface for monitoring and potentially modulating SC neuronal activity associated with motor dysfunctions.


Assuntos
Movimento , Neurônios , Humanos , Camundongos , Animais , Eletrodos , Neurônios/fisiologia , Movimento/fisiologia , Eletroencefalografia/métodos
3.
Materials (Basel) ; 15(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683088

RESUMO

Using high-strength steel (yield strength fy ≥ 460 MPa) in concrete-filled steel tubes is expected to provide a superior bearing capacity by achieving light weight and efficient construction, but the existing design limitation on diameter-to-thickness (D/t) ratios for concrete-filled high-strength steel tubular (CFHST) members inevitably obstructs its wide application. In this study, aiming at the application of circular CFHST members using Q690 steel (fy ≥ 690 MPa), a total of 15 CFHST beams were examined using a three-point loading test to investigate the failure mode, bearing capacity and plasticity evolution. Subsequently, finite element models (FEMs) were established to analyze the full-range curves, composite effect, failure mechanism and influences of key parameters including material strengths, D/t ratios, and shear-span ratios. A simplified calculation method for bearing capacity was finally proposed and verified. The results indicate that the full-range performance of tested CFHST members with out-of-code D/t ratios have ductile behavior, though they fail through the mode of steel fracture and concrete cracks in the tension zone as well as through local buckling in the compression zone; out-of-code CFHST members (e.g., D/t = 120) can perform reasonable composite behavior because of contact pressure larger than 2.5 MPa, where a thin-walled steel tube experiences an arch failure mechanism similar to core concrete at a trussed angle of 45°; the simplified bearing capacity model achieves a mean value of 0.97, and can be accepted as a primary tool to perform structural design and performance evaluation.

4.
Neuron ; 108(4): 707-721.e8, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32970991

RESUMO

Glia are typically considered as supporting cells for neural development and synaptic transmission. Here, we report an active role of a glia in olfactory transduction. As a polymodal sensory neuron in C. elegans, the ASH neuron is previously known to detect multiple aversive odorants. We reveal that the AMsh glia, a sheath for multiple sensory neurons including ASH, cell-autonomously respond to aversive odorants via G-protein-coupled receptors (GPCRs) distinct from those in ASH. Upon activation, the AMsh glia suppress aversive odorant-triggered avoidance and promote olfactory adaptation by inhibiting the ASH neuron via GABA signaling. Thus, we propose a novel two-receptor model where the glia and sensory neuron jointly mediate adaptive olfaction. Our study reveals a non-canonical function of glial cells in olfactory transduction, which may provide new insights into the glia-like supporting cells in mammalian sensory procession.


Assuntos
Neuroglia/fisiologia , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Neurônios GABAérgicos/fisiologia , Mutação , Inibição Neural/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...